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Introduction. To describe wave motion on a flexible string or rod one writes the
one-dimensional wave equation

∂2
t ϕ = +b ∂2

xϕ

but for a stiff rod one has (for complicated rheological reasons, and after certain
simplifications)

∂2
t ϕ = −β∂4

xϕ (1)

Similarly, the diffusion equation reads

∂tϕ = +a ∂2
xϕ

but in early  Richard Crandall encountered algorithmic need—the precise
connection was never explained to me—of the biharmonic diffusion equation

∂tϕ = −α ∂4
xϕ (2)

A question that arises naturally in both cases (and issues from the lips as
a physical question) is “Why the ∂4

x?” But the question to which Richard
directed my specific attention was “Why the minus sign?”1 It was my response
to Richard’s question (which happened to coincide with a freshly-acquired
speaking obligation) that set in motion the train of thought that produced
the material reported a few weeks later at my “fractional calculus seminar.”2

‡ Notes for a Reed College Physics Seminar presented  March .
1 It turns out that the two questions are—not at all surprisingly—

intertwined: my attempt to illuminate the latter cast pale light also on the
former.

2 “Construction & physical applications of the fractional calculus,” Reed
College Physics Seminar presented  March . It embarrasses me to report
that, of all the things I have written, this is the item for which reprints have
been, and continue to be, most frequently requested.
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In several dimensions the diffusion equation reads

∂tϕ = a∇2ϕ

and by mid- Richard’s work had led him to wonder about the meaning—if
any—that (especially in the 2-dimensional case) might sensibly be assigned to
the “fractional Laplacian” that enters into the fractional diffusion equation

∂tϕ = a∇pϕ : p �= 2 (3)

This is a question that had been stewing also in the back of my own mind, so
in November of  I undertook to explore the issue.3

In §2 of those research notes, which is entitled “A novel approach to the
fractional calculus,” my sole intent was to secure the foundations of, and to
explain in the simplest possible terms, the essence of one of my projected lines
of attack on the ∇p problem. Only later did I come to realize that that work
was of some independent significance, and that it addressed (among others, and
in its modest way) a problem that has long bedeviled the fractional calculus.
It is to the substance of that §2 that I today restrict my attention.

1. Short history of the fractional calculus. It is elementary that the operations
of differentiation and of indefinite integration

D : f(x) �−→ df(x)
dx

aD−1
x : f(x) �−→

∫ x

a
f(y) dy


 (4)

can be iterated. And it was notationally obvious to Leibniz (if not to Newton)
that iterated differentiation4 obeys the law of exponents :

DmDn = Dm+n : m, n = 0, 1, 2, . . . (5)

We are therefore not surprised to find Leibniz, in September of , writing
to his friend l’Hospital as follows:5

“Jean Bernoulli seems to have told you of my having mentioned to
him a marvelous analogy which makes it possible to say in
a way that successive differentials are in geometric progression.

3 That work is reported in “‘Laplacian operators’ of eccentric order” (),
which runs to some 84 pages. In §1 of those notes, under the head “The
sign problem in one dimension,” I record my response to the first of Richard’s
questions.

4 I find it convenient to suspend for the moment reference to the parallel
propeties of the relatively more complicated operator aD−1

x .
5 My source here is B. Mandelbrot (Fractals: Form, Chance, and Dimension

(), p. 299), who claims responsibility for the translation.
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One can ask what would be a differential having as its exponent
a fraction. You see that the result can be expressed by an infinite
series, although this seems removed from Geometry, which does not
yet know of such fractional exponents. It appears that one day these
paradoxes will yield useful consequences, since there is hardly a
paradox without utility. Thoughts that mattered little in themselves
may give occasion to more beautiful ones.”

Thirty-five years later, Euler expressed a similar thought, and took explicit note
of the fact that a kind of interpolation theory comes necessarily into play:

“Concerning transcendental progressions whose terms cannot be
given algebraically: when n is a positive integer, the ratio dnf/dxn

can always be expressed algebraically. Now it is asked: what kind of
ratio can be made if n be a fraction? . . . the matter may be expedited
with the help of the interpolation of series, as explained earlier in
this dissertation.”6

. . .but I do not know the identity of the “dissertation” to which he refers; the
notion of a “fractional calculus” is, so far as I am aware, not mentioned in his
monumental Institutiones calculi differentialis of , and first public mention
of the so-called “Euler integrals”

Γ (z) =
∫ ∞

0

xz−1e−x dx

B(m, n) =
∫ 1

0

xm−1(1 − x)n−1 dx =
Γ (m)Γ (n)
Γ (m + n)

—which play such a central role in this story—did not appear until publication
of Institutiones calculi integralis (3 volumes, –).

The first substantive step toward the creation of a fractional calculus was
taken in  when S. F. Lacroix—quite casually, and with no evident practical
intent—remarked that the familiar formula

Dmxp = p(p − 1)(p − 2) · · · (p − m + 1)xp−m

—which we notate Dmxp = p!
(p−m)! x

p−m when m is an integer—can in every
case be notated

Dmxp =
Γ (p + 1)

Γ (p − m + 1)
xp−m (6.1)

and that (6) makes formal sense even when m is not an integer. The fact that

Dmxp = 0 when m and p are integers with m > p

6 For discussion of some aspects of an interpolative approach to the
fractional calculus—an approach which (in my hands at least) does not work
very well because it involves interpolation in the exponent—see “Extrapolated
interpolation theory” (April ).
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Figure 1: Graph showing the location of the singularies of Γ (x).
By () Lacroix was in position to exploit Euler’s observation that
Γ (n + 1) = n! : n = 0, 1, 2, . . .

can then be attributed to the circumstance (see the figure) that Γ (x) becomes
singular at x = 0,−1,−2, . . . Proceeding in the other direction, one has

D−1xp ≡ 0D
−1
x xp ≡

∫ x

0

yp dy = 1
(p+1)x

p+1

D−2xp = 1
(p+2)(p+1)x

p+2

...

D−nxp = 1
(p+n)···(p+2)(p+1)x

p+n = p!
(p+n)!x

p+n

which can in the same spirit be written

D−nxp =
Γ (p + 1)

Γ (p + n + 1)
xp+n (6.2)

Lacroix found himself in position, therefore, to assign a formally very simple (if
computationally intricate) meaning to expressions of the type

Dµ
{ ∑

p

fp xp
}

: µ any number, real or complex

and to demonstrate that, in consequence of an elementary property of the
gamma function, the D operator, thus construed, supports an unrestricted law
of exponents:

DµDν = Dµ+ν : all real or complex µ, ν (7)

Lacroix’s construction (which subsumes all of ordinary calculus) survives to
this day as a sub-calculus within the full -blown fractional calculus. We note
with interest that the interpolative burden of the construction is borne entirely
by Euler’s Γ function. And that, though it is by entrenched tradition that
one speaks of the “fractional calculus,” it is not at all necessary that µ, ν be
rational.
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By the Fundamental Theorem of Calculus

D · aD−1
x f(x) ≡ d

dx

∫ x

a
f(y) dy = f(x) : all f(x), all a

On the other hand,
aD−1

x · Df(x) = f(x) − f(a)

so [
D · aD−1

x − aD−1
x · D

]
f(x) = f(a)

= 0 only if f(x) vanishes at a

(which Lacroix tacitly assumed to be the case). The purported “law of
exponents” (7) is in this respect deceptive, and in need of repair. To that
end...

It is readily verified that

d
dx

∫ x

a
(x − y)f(y) dξ =

∫ x

a
f(y) dy

from which it follows straightforwardly that

dn

dxn

∫ x

a
(x − y)nf(y) dy = n!

∫ x

a
f(y) dy : n = 0, 1, 2, . . .

Iterated integration of the preceding identity yields7

∫ x

a

∫ yn

a

∫ yn−1

a

· · ·
∫ y2

a︸ ︷︷ ︸f(y1) dy1dy2 · · · dyn = 1
(n−1)!

∫ x

a

(x − y)n−1f(y)dy

n-fold iterated : n = 1, 2, 3, . . .

which is usually attributed to Cauchy, and which we are in position to notate

aD−n
x f(x) = 1

Γ (n)

∫ x

a

(x − y)n−1f(y) dy : n = 1, 2, 3, . . . (8)

The fractional calculus was conceived by Riemann and Liouville (who set a = 0)
and later by Weyl (who didn’t) to be a theory of ordinary differentiation and
fractional integration, based upon this generalization

aD−ν
x f(x) = 1

Γ (ν)

∫ x

a

(x − y)ν−1f(y) dy : ν > 0 (9)

7 See R. Courant, Differential & Integral Calculus (), Volume II, p. 221;
R. Courant & D. Hilbert, Methods of Mathematical Physics (), Volume II,
p. 523; I. S. Gradshteyn & I. M. Ryzhik, Tables of Integrals, Series & Products
(), 4.631, p. 620.
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of (8).8 The fractional integrals of f(x) can in this light be said to be integral
transforms of f(x), and it is as such that they are tabulated on pages 185–212
of A. Erdélyi et al , Tables of Integral Transforms, Volume II (). Fractional
derivatives emerge as secondary constructions, from

aD
m−ν
x f(x) = Dm · aD

−ν
x f(x) (10)

We would, for example, write

aDx

1
3 f(x) = D1 · aDx

− 2
3 f(x)

aDx

4
3 f(x) = D2 · aDx

− 2
3 f(x)

Look in particular to the “semiderivative”

aDx

1
2 f(x) = D1 · aDx

− 1
2 f(x)

=
d

dx
· 1
Γ ( 1

2 )

∫ x

a

1√
x − y

f(y) dy

which in the simple case f(x) ≡ 1 gives

aDx

1
2 1 =

d

dx
· 1√

π

∫ x

a

1√
x − y

dy

=
d

dx
· 2

√
x − a√
π

=
1√

π(x − a)

and at a = 0 gives back the result obtained by Lacroix:

D
1
2 x0 =

Γ (1)
Γ ( 1

2 )
x− 1

2 =
1√
π

x− 1
2 =

√
1

πx

2. Ordinary derivatives as integral transforms. Familiarly∫
δ(y − x)f(y) dy = f(x)∫

δ ′(y − x)f(y) dy = δ(y − x)f(y)
∣∣∣ −

∫
δ(y − x)f ′(y) dy

= −f ′(x)
...

8 Note that the Riemann-Liouville construction (9) yields nonsense at
ν = −0,−1,−2, . . . and that these are precisely the points at which aD−ν

x

speaks of the most unexceptionably commonplace objects in the calculus: the
derivatives of integral order.
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which lead to the general statement

Dnf(x) ≡ f (n)(x) = (−)n

∫
δ(n)(y − x)f(y) dy (11)

Here the nth derivative of f(x) is presented as an integral transform—a “Dirac
transform”—of the function in question.

To render more concrete the meaning of (11) we bring representation theory
into play, writing

δ(y − x) = lim
ε↓0

1√
2πε

e−
1
2ε (y−x)2 (12)

“Representation of the δ-function” can, of course, be accomplished in infinitely
many alternative ways. We have at (12) selected the Gaussian representation
for this practical reason: derivatives of the Gaussian are well-studied named
functions about which a great deal is known. Specifically, we have (compare
advanced quantum topics (), Chapter 0, page 46)

δ(n)(y − x) = lim
ε↓0

1√
2πε

(
− 1√

ε

)n

Hen

(y − x√
ε

)
e−

1
2ε (y−x)2 (13)

where Hen(z) ≡ (−)ne
1
2 z2( d

dz

)n
e−

1
2 z2

serves to define the “monic Hermite
polynomials”9

He0(z) = 1
He1(z) = z

He2(z) = z2 − 1
He3(z) = z3 − 3z

He4(z) = z4 − 6z2 + 3
He5(z) = z5 − 10z3 + 15z

...
Hen+1(z) = zHen(z) − nHen−1(z)

Returning with this information to (11), we have

Dnf(x) = lim
ε↓0

1√
2πε

(
1
ε

)n
2
∫ +∞

−∞
wn

(y − x√
ε

)
f(y) dy (14.1)

≡ lim
ε↓0

∫
Wn(y − x ; ε)f(y) dy (14.2)

with
wn(z) ≡ e−

1
2 z2

Hen(z) =
(
− d

dz

)n
e−

1
2 z2

(15)

9 See Magnus & Oberhettinger, Functions of Mathematical Physics (),
page 80; Spanier & Oldham, Atlas of Functions (), Chapter 24. To produce
such functions within Mathematica define

H[n ,z ]:=:=:= 2−n/2HermiteH[ n, z/
√
2 ]
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-4 4

0.8

Figure 2a: Graphs of W0(x ; ε) become sharper and more compact
as ε descends through the values 1, 1

2 , 1
4 . The figure illustrates how

it comes about that

lim
ε↓0

W0(x ; ε) = δ(x)

-4 4

-1

1

Figure 2b: Graphs of W1(x ; ε) as ε descends through the values
1, 1

2 , 1
4 . The figure illustrates the sense in which

lim
ε↓0

W1(x ; ε) = lim
ε↓0

δ(x + 1
2ε) − δ(x − 1

2ε)
ε

= δ(1)(x)
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-4 4

-4

2

Figure 2c: Graphs of W2(x ; ε) as ε descends through the values
1, 1

2 , 1
4 . The figure illustrates the sense in which

lim
ε↓0

W2(x ; ε) = lim
ε↓0

δ(1)(x + 1
2ε) − δ(1)(x − 1

2ε)
ε

= lim
ε↓0

δ(x + ε) − 2δ(x) + δ(x − ε)
ε2

= δ(2)(x)

Equation (11) can be criticized on the ground that it is excessively formal. At
(14) we have removed that defect—have, in fact, assigned meaning to (11)—
by presenting the nth derivative of f(x) as the limit of a sequence of integral
transforms.

3. Fractional derivatives as integral transforms. Busy citizens, well-established
within the community of higher functions, are the so-called “parabolic cylinder
functions” Dν(x), often called “Weber functions” and less often a confusing
variety of other names. The elaborate theory of such functions is summarized
in all the standard handbooks.10 One has

Dn(z) = e−
1
4 z2

Hen(z) : n = 0, 1, 2, . . . (16)

giving
wn(z) ≡ e−

1
4 z2

Dn(z)

whence
Wn(y − x ; ε) = 1√

2πε

(
1
ε

)n
2
e−

1
4ε (ξ−x)2Dn

(y − x√
ε

)

10 See, for example, Erdélyi et al , Higher Transcendental Functions II (),
Chapter 8; Abramowitz & Stegun, Handbook of Mathematical Functions (),
Chapter 19; Magnus & Oberhettinger, Formulas & Theorems for the Functions
of Mathematical Physics (), Chapter 6, §3; Spanier & Oldham, An Atlas
of Functions (), Chapter 46.
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But the point of interest—fundamental to this entire discussion—is that the
Weber functions—which for (Mathematica’s) computational purposes are most
conveniently described

Dν(x) = 2ν/2e−
1
4 x2

{√
π Hypergeometric1F1[− 1

2ν, 1
2 , 1

2x2 ]

Gamma[ 1
2 (1 − ν)]

−
√

2πx Hypergeometric1F1[ 1
2 (1 − ν), 3

2 , 1
2x2 ]

Gamma[− 1
2ν]

}

—are well-defined for all (positive or negative) real values of ν! They serve
(ν � 0) to interpolate between and (ν < 0) to extrapolate beyond the hermite
functions hen(x) = e−

1
4 x2

Hen(x)—which themselves presume the index to be
integer-valued—and do so in what can from many points of view be argued to
be the “analytically most natural way.” Looking in this light back again to
(14.2), it would appear to make tentative good sense to write

Dνf(x) = lim
ε↓0

∫
Wν(y − x ; ε)f(y) dy : all ν (17.1)

with

Wν(y − x ; ε) = 1√
2πε

(
1
ε

)ν/2

e−
1
4ε (y−x)2Dν

(y − x√
ε

)
(17.2)

This is the idea I propose to explore.

Look first to the case ν = −1. We are informed by Mathematica that

W−1(y − x ; ε) = 1
2

[
1 − erf

(y − x√
ε

)]

It is a clear implication of Figure 3, and not difficult now to prove,11 that

lim
ε↓0

W−1(y − x ; ε) = 1 − θ(y − x) = θ(x − y) =
{

1 : y < x
0 : y > x

so (17.1) becomes

D−1f(x) =
∫ +∞

−∞
θ(x − y)f(y) dy

=
∫ x

−∞
f(y) dy

while with scarcely more labor we find

D−2f(x) =
∫ x

−∞
(x − y)1f(y) dy

D−3f(x) = 1
2

∫ x

−∞
(x − y)2f(y) dy

...

11 See page 7 in “‘Laplacian operators’ of eccentric order.”3
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-4 4

1

Figure 3: Graphs of W−1(y ; ε) drop ever more abruptly as ε
descends through the values 1, 1

2 , 1
4 . The figure illustrates how it

comes about that

lim
ε↓0

W−1(y ; ε) = 1 − θ(y) = θ(−y)

Demonstration that for all (even fractional) ν > 0

lim
ε↓0

W−ν(y − x ; ε) =
(x − y)ν−1

Γ (ν)
θ(x − y) (18)

presents a formidable analytical assignment—an assignment which I myself have
not yet attempted to carry out. In support of my confident claim that (18) must
certainly be correct I offer only the evidence of Figure 4. To summarize our
progress thus far:

Our “interpolated representation-theoretic approach” to the fractional
differentiation problem has by extrapolation reproduced a slight variant of the
standard theory of fractional integration: it has led us to

aD−ν
x in the case a = −∞ : ν > 0

In standard theory (theory of the Riemann-Liouville transform) it is canonical
to set a = 0. Our −∞ is a vestige of the circumstance that it is on the entire
real line −∞ < x < +∞ that Gaussians live.

Since, as was remarked already at (10), in standard theory one proceeds

fractional derivative = (ordinary derivative) · (fractional integral)

it might appear that our work is done. However. . .
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Figure 4: Graphs of W− 1
2
(y ; ε) are seen to squeeze ever closer to

the red graph of
(−y)

1
2−1

Γ ( 1
2 )

θ(−y)

as ε descends through the values 0.12, 0.06, 0.03. Similar figures
result from

W−ν(y ; ε) compare
(−y)ν−1

Γ (ν)
θ(−y) : ν > 0

and serve collectively to secure confidence in the accuracy of (18).

We in Figures 2b & 2c saw representations of the integration process
(convolution process) that extracts from f(x) its 1st and 2nd derivatives. We
are now in position to observe (Figures 5a, 5b & 5c) that similar figures
serve to describe the process that extracts derivatives of interstitial order:

-4 4

2

Figure 5a: W0(y ; ε) morphs to W1(y ; ε) as ν ranges on the values{
0, 1

4 , 2
4 , 3

4 , 1
}
. Here ε = 1

8 .
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-4 -2 2 4

4

Figure 5b: W1(y ; ε) morphs to W2(y ; ε) as ν ranges on the values{
1, 5

4 , 6
4 , 7

4 , 2
}
. Here again ε = 1

8 . Note the contracted vertical scale.

-4 -2 2 4

40

Figure 5c: W2(y ; ε) morphs to W3(y ; ε) as ν ranges on the values{
2, 9

4 , 10
4 , 11

4 , 3
}
. Here again ε = 1

8 and the vertical scale has been
further contracted.

It is intended, of course, that ε ↓ 0. The effect of that process is illustrated in
Figure 6.

4. Some illustrative specific cases. A sense of what we have accomplished—and
failed to accomplish—is, in view of the analytical complexity of our results,
best conveyed, I think, by study of some illustrative concrete examples. We
look first to

semi-integrals/derivatives of powers Proceeding from the following
instance of (9)

aDx
− 1

2 f(x) = 1√
π

∫ x

a

1√
x − y

f(y) dy
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-2 2

-4

4

8

Figure 6: The limiting process ε ↓ 0, illustrated in the case ν = 1
2

(semi-differentiation). The graph becomes ever sharper as ε ranges
on { 1

10 , 1
20 , 1

30 , . . . , 1
70}.

in the case f(x) = xp, we with the assistance of Mathematica obtain

aDx
− 1

2 x0 = 2
√

x − a√
π

aDx
− 1

2 x1 =
2
√

x − a (2x + a)
3
√

π

aDx
− 1

2 x2 =
2
√

x − a (8x2 + 4ax + 3a2)
15
√

π

aDx
− 1

2 x3 =
2
√

x − a (16x3 + 8ax2 + +6a2x + 5a2)
35
√

π

aDx
− 1

2 x4 =
2
√

x − a (128x4 + 64ax3 + 48a2x2 + 40a3x + 35a4)
315

√
π




(19)

If we set a = 0 we have

0Dx
− 1

2 x0 = 2√
π

x
1
2

0Dx
− 1

2 x1 = 4
3
√

π
x

3
2

0Dx
− 1

2 x2 = 16
15
√

π
x

5
2

0Dx
− 1

2 x3 = 32
35
√

π
x

7
2

0Dx
− 1

2 x4 = 256
315

√
π

x
9
2

...

0Dx
− 1

2 xp =
Γ (p + 1)

Γ (p + 1 + 1
2 )

xp+ 1
2 (20)
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as presented at 13.1(7) in the Erdélyi Table of Riemann-Liouville fractional
integrals that was cited on page 6. By simple differentiation we obtain the
semi-differentiation formula

0Dx
+ 1

2 xp = D · 0Dx
− 1

2 xp =
Γ (p + 1)

Γ (p + 1 + 1
2 )

(
p + 1

2

)
xp− 1

2

=
Γ (p + 1)
Γ (p + 1

2 )
xp− 1

2 (21)

first obtained (by other means: compare (6.1)) by Lacroix. The formalism
developed in preceding pages requires, however, that we set a = −∞. Equations
(19) then supply

D− 1
2 xp = ∞ : p = 0, 1, 2, . . .

and it would appear to be pointless to attempt to assign valuation to

“D+ 1
2 xp = D ·D− 1

2 xp = D∞”

The present formalism supplies, however, a direct valuation

D
1
2 xp = lim

ε↓0

∫ +∞

−∞
W 1

2
(y − x ; ε) yp dy

For computational purposes we assign ε a “sufficiently small test value” and—in
view of the localized structure assumed by Wν(y−x ; ε) when ν > 0 (see Figures
5 and especially Figure 6)—restrict the range of the integral, writing (say)

≈
∫ x+3

x−3

W 1
2
(y − x ; 1

100 ) yp dy (22)

So complicated is the integrand (see again (17.2)) that we have no alternative
but to proceed numerically. The following figures provide comparative displays

1 2 3 4

1

2

3

4

Figure 7a: Semi-derivative of x1, derived first—solid curve—from
(21) and then—dotted curve—from (22). The two appear to be in
asymptotic agreement.
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1 2 3 4

2

4

6

8

10

12

14

Figure 7b: Semi-derivatives of x2, derived from (21) and (22).
Again we appear to see asymptotic agreement.

1 2 3 4

10

20

30

40

50

60

Figure 7c: Semi-derivatives of x3, computed again in the same
two alternative ways.

of some of the representative implications of (21) and (22). Remarkably, we
appear to have precise agreement for x � 0; i.e., for x much larger than the
value to which the Riemann-Liouville method assigns a distinguished place.
Asymptotic agreement serves to underscore the local character of fractional
differentiation—a point that is obscured when (as is standardly done) one
construes fractional derivatives to be ordinary derivatives of fractional integrals.
Figure 8 provides evidence supportive of the claim that the fractional calculus
advocated here precisely reproduces the ordinary calculus when asked to make
statements about derivatives of integral order.

semi-integrals/derivatives of exponentials Proceeding as before from
an instance of (9)

aDx
− 1

2 epx = 1√
π

∫ x

a

1√
x − y

epy dy
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1 2 3 4

10

20

30

40

50

1 2 3 4

5

10

15

20

25

Figure 8: Shown above is the first derivative—and below the second
derivative—of x3.The solid curve was obtained by ordinary calculus,
the dotted points computed by numerical appeal to the obvious
variants of (22). We take this to be evidence that formulæ analogous
to (22) could be used to reproduce the content of ordinary differential
calculus.

we are informed by Mathematica that

aDx
− 1

2 epx =
epx erf(

√
p(x − a) )

√
p

where the notation erf(z) refers to the “error function.”12 If we set a = 0, as
recommended by Riemann-Liouville, we obtain

0Dx
− 1

2 epx =
epx erf(

√
px )

√
p

12 See Chapter 7 in Abramowitz & Stegun.
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which when hit with D gives

0Dx
+ 1

2 epx = 1√
πx

+
√

p epx erf(
√

px ) (23)

We, on the other hand, are motivated to set a = −∞, which leads to

D− 1
2 epx = epx

√
p

whence
D+ 1

2 epx =
√

p epx (24)

It is easy to show (Figure 9) that

lim
x↑∞

right side of (24)
right side of (23)

= 1

2 4 6 8 10

1

Figure 9: Demonstration that the alternative semi-derivatives of
ex become asymptotically identical, in the sense that their ratio
approaches unity.

which is again symptomatic of the general fact that asymptotically the two
formalisms become identical. Alternatively to (24) we expect, by adjustment
of (22), to have

D+ 1
2 epx ≈

∫ x+3

x−3

W 1
2
(y − x ; 1

100 ) epy dy (25)

In support of that expectation, see Figure 10. The present formalism leads to
a striking general result

Dνepx = pνepx : ν > 0

that appears on its face to be simpler and more natural than the corresponding
statement within the Riemann-Liouville formalism, though the latter is shown
in §11 of some notes already cited2 to give rise to some fascinating mathematics.
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Figure 10: Superposition of the valuations of the semi-derivatives
D

1
2 epx that derive from (24) and (25), respectively.

5. Law of exponents. Gaussian representation theory led us at (17.1) to an
equation which, when notationally stripped of its epsilonic details, reads

Dνf(x) =
∫

Wν(y − x)f(y) dy

and from which we expect to obtain

(
d
dx

)n
Dνf(x) =

∫
Wn+ν(y − x)f(y) dy (26)

—the formal design of which we expect to recur whatever the “representation
of the delta function” upon which we elect to base our formalism. It is, in this
light, gratifying to discover that at 46:10:3 in their Atlas of Functions ()
J. Spanier & K. B. Oldham report what they call “the elegant relationship”

(
− d

dz

)n{
e−

1
4 z2

Dν(z)
}

= e−
1
4 z2

Dn+ν(z) : n = 0, 1, 2, . . .

from which, by (17.2), it readily follows that
(

d
dx

)n
Wν(y − x ; ε) = Wn+ν(y − x ; ε)

holds for all ε, and therefore also in the limit ε ↓ 0. The implication is that (26)
is valid for all ν, whether positive or negative.13

13 Spanier & Oldham were themselves the co-authors of the first book devoted
to the fractional calculus (The Fractional Calculus : Theory & Applications of
Differentiation and Integration to Arbitrary Order ()), but apparently failed
to notice that their “elegant relationship” had any relevance to that subject.
So also did Erdélyi, who cultivated an interest in the fractional calculus, and
presents the identity in question on page 119 of Higher Transcendental
Functions ().
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To establish the law of exponents as it relates to compounded fractional
integration we might proceed

D−µD−νf(x) =
∫

W−µ(z − x)
{ ∫

W−ν(y − z)f(y) dy

}
dz

=
∫ { ∫

W−µ(z − x)W−ν(y − z) dz

}
f(y) dy (27)

Since both µ and ν are assumed presently to be positive, we can on appeal to
(18) write
∫

W−µ(z − x)W−ν(y − z) dz = 1
Γ (µ)Γ (ν)

(x− z)µ−1(z − y)ν−1θ(x− z)θ(z − y)

for which Mathematica—after a good deal of thought—supplies the valuation

= 1
Γ (µ + ν)

(x − y)µ+ν−1θ(x − y)

= W−(µ+ν)(y − x)

Returning with this information to (27) we have the integrative law of exponents

D−µD−ν = D−(µ+ν)

6. Geometrical interpretation of fractional derivatives. K. S. Miller & B. Ross—
authors of An Introduction to the Fractional Calculus & Fractional Differential
Equations ()—remark in §8 of their Chapter I: Historical Survey that
“Some of the still-open questions are intriguing. For example: Is it possible to
find a geometrical interpretation for a fractional derivative of noninteger order?”
The question is ancient—recall Leibniz’ lament that the subject “seems removed
from Geometry, which does not yet know of such fractional exponents”—and it
is, in view of the diagram we traditionally draw when we explain what it means
to construct Df(x), quite natural. The “geometrical meaning” of D−1f(x)
is similarly direct. But when we look to D±nf(x) our geometrical intuition
becomes progressively more tenuous as n increases; in such situations we find it
entirely natural to abandon geometrical representations, and to adopt a more
formal, a more algorithmic mode of thought . . . and are seldom or never heard
to fuss about the loss of geometrical immediacy.

The absence within the fractional calculus of a figure directly analogous
to Figure 11 has, however, tended to marginalize our subject. Calculus 1011

2
courses do not exist, and for the most part only desperate eccentrics attempt
to exploit the little-known resources of the fractional calculus—attempt, that is
to say, to follow in the tradition established almost two centuries ago () by
Abel.14 It is, therefore, perhaps of some importance that the present formalism

14 See Miller & Ross, pages 4 and 255–260.
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x

Figure 11: Representation of the most commonly understood
“geometrical meaning” (slope of the tangent) of the derivative Df(x).
It will be appreciated that the tangent has meaning only as the limit
of a convergent sequence of chords.

Figure 12: In the present formalism Df(x) emerges as the limit of
the area under the product of the two functions shown. The lower
function is representative of a ε-parameterized class of functions,
which in the limit limε↓0 provide a representation of −δ ′(y − x).

does provide a direct “geometrical interpretation” of Dνf(x) for all real ν,
positive as well as negative. For the formalism invites us to consider an
alternative (Figure 12) to the standard interpretation (Figure 11) of D1f(x),
the point being that the alternative construction “morphs” in a natural way
(Figures 13 & 14) to provide equally direct interpretations of Dνf(x) for all
values of ν. Underlying this advance is the fact tha Dνf(x) has been presented
at (17.1) as the limit of a sequence of convolutions , and convolutions—whatever
the context in which they are encountered—admit of elementary diagramatic
representation.
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Figure 13: Representation within the present formalism of D2f(x),
to be understood in the sense described in the preceding caption.
The lower function is representative of a ε-parameterized class of
functions which in the limit provide a representation of +δ ′′(y−x).

Figure14:Representation within the present formalism of D
1
2 f(x),

to be understood in the sense already described (in which connection
see again Figure 6).

7. Concluding remarks. The formalism sketched in preceding pages proceeds
from the Gaussian representation (12) of the Dirac delta function, and it is
because “the Gaussian lives on the entire line” that we were—at a cost which
was shown to be

• major as it relates to fractional integration, but
• often vanishingly slight as it relates to fractional differentiation

—obliged to set a = −∞. Other representations would lead to variants of the
formalism—some more workable than others. If one were willing to restrict
one’s attention to the positive half line one could arrange to achieve a = 0, and
thus to reproduce the Riemann-Liouville formalism.
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The formalism described above manages to detach the concept of fractional
differentiation from that of fractional integration: it becomes possible to speak
of D

1
2 f(x) even in contexts where D · D− 1

2 f(x) does not exist. This is a
capability absent from the Riemann-Liouville formalism.

Though we owe to (17.1)—i.e., to

Dνf(x) = lim
ε↓0

∫
Wν(y − x ; ε)f(y) dy

—the diagramatic transparency of our results, the function Wν(y − x ; ε) is so
complicated that only exceptionally does it become possible to evaluate the
integral in analytically closed form. We have demonstrated, however, that
it is often quite possible to obtain useful information by numerical means.
The preceding discussion does, in any event, serve to reenforce the view that
“fractional calculus” is but the seductive name given to what is, in the end,
simply an integral transform theory, like any other.15

I am mindful that this is a physics seminar, and that discussion of this
subject before such an audience can be justified only by reference to the
importance of the physical applications of the fractional calculus. Some typical
applications were sketched in a previous seminar,2 the text of which is available
at Reed College on the courses server. To gain a sense of present activity in
the field consult Google,16 where it becomes evident (as it has to me from the
identity of those who have requested reprints17 of my seminar notes) that some
of the heaviest consumers of fractional calculus these days are biophysicists
and—of all things—soil mechanics. Reportedly the dispersal of pollutants in
ground water, as of water in porus soil, is most accurately modeled18 not by
the standard diffusion equation but by an equation of the form (compare (3))

(∂t)
νϕ = a∇2ϕ

It is my pleasure to thank R. Crandall for the conversations that stimulated
this effort, and A. Pellegrini for inspiration during the writing.

15 This is the view tacitly embraced in A. I. Zayed, Handbook of Function
& Generalized Function Transformations (). Chapter 20 provides a fairly
sophisticated account of the Riemann-Liouville and Weyl transforms.

16 To “fractional calculus” Google responds with about 83,100 hits, many
of which are quite interesting: see, for example, Adam Loverro, “Fractional
Calculus: History, Definitions and Applications for the Engineer” () at
www.nd.edu/∼msen/Teaching/UnderRes/FracCalc.pdf.

17 Most of those requests have been responsive to complementary remarks in
Marcia Kleinz & Thomas J. Osler, “A child’s garden of fractional derivatives,”
The College Mathematics Journal 31, 82 (2000), which can be found at
http.//www.rowan.edu/mars/depts/math/osler/Childs garden.

18 See, for example, R. Schumer, D. A. Benson & B. Baeumer, “Multiscaling
fractional advection-dispersion equations and their solutions,” Water Resources
Research 39, 1022 (2003) at unr.edu/homepage/mcubed/MultifADEwrr.pdf.


